TU Berlin

Wasserwirtschaft und HydrosystemmodellierungPublikationen

Inhalt des Dokuments

zur Navigation

Publikationen

BibTex-ListeAlle

2019

Teuber, Katharina and Broecker, Tabea and Bentzen, Thomas Ruby and Stephan, Dietmar and Nützmann, Gunnar and Hinkelmann, Reinhard (2019). Using computational fluid dynamics to describe H2S mass transfer across the water–air interface in sewers. Water Science and Technology, 1934-1946.

Link zur Publikation


Teuber, K., Broecker, T., Bayon, A., Nützmann, G. & Hinkelmann, R. (2019). CFD-modelling of free surface flows in closed conduits. Progress in Computational Fluid Dynamics, 368-380.


Schmid, A., Schellenberg, H., Tretter, G., Meißner, D., Hinkelmann, R., Matta, E. & Scheer, C. (2019). DSA Forschugsbericht (FKZ: 19F2051A bis D; mFund Forschungsinitiative). , 1-96.


Mohammad Zounemat-Kermani and Dietmar Stephan and Reinhard Hinkelmann (2019). Multivariate NARX neural network in prediction gaseous emissions within the influent chamber of wastewater treatment plants. Atmospheric Pollution Research, 1812 - 1822.

Link zur Publikation

Özgen, I., Zhao, J. and Hinkelmann, R. (2019). A contribution to momentum head loss models in porous shallow water models.


Jiaheng Zhao and Ilhan Özgen-Xian and Dongfang Liang and Tian Wang and Reinhard Hinkelmann (2019). A depth-averaged non-cohesive sediment transport model with improved discretization of flux and source terms. Journal of Hydrology, 647 - 665.

Link zur Publikation

Jiaheng Zhao and Ilhan Özgen-Xian and Dongfang Liang and Tian Wang and Reinhard Hinkelmann (2019). An improved multislope MUSCL scheme for solving shallow water equations on unstructured grids. Computers & Mathematics with Applications, 576 - 596.

Link zur Publikation




Ghazal,A., Sieker,H., Hinkelmann,R. & Tügel,F. (2019). Urban Fllod Mitigation in Arid Regions using Sustainable Urban Drainage Systems (SUDS).


Ma, Y. and Matta, E. and Meißner, D. and Schellenberg, H. and Hinkelmann, R. (2019). Can machine learning improve the accuracy of water level forecasts for inland navigation? Case study: Rhine River Basin, Germany. 38th IAHR World Congress Panama City 2019, Water - Connecting the world, 1979-1989.


Matta, E. and Ma, Y. and Meißner, D. and Schellenberg, H. and Hinkelmann, R. (2019). Artificial neural networks to forecast water levels for inland navigation in the Rhine River, Germany.


Broecker, Tabea and Teuber, Katharina and Sobhi Gollo, Vahid and Nützmann, Gunnar and Lewandowski, Jörg and Hinkelmann, Reinhard (2019). Integral Flow Modelling Approach for Surface Water-Groundwater Interactions along a Rippled Streambed. Water

Link zur Publikation

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe