TU Berlin

Chair of Water Resources Management and Modeling of HydrosystemsAbstract

Page Content

to Navigation


In water resources management computer simulations and numerical methods have become a more and more important tool for supporting decisions. They enable the understanding of complex relationships in the hydrological cycle and predictions about future development.

This thesis describes the development of a numerical modeling software which allows the integrated simulation of surface water flow and transport processes as well as their interactions. To make use of the improvements in the methods to survey high-resolution topography information and to capture small-scale processes, numerical methods were developed which allow a robust and highly detailed simulation of surface water flow and transport processes in urban and natural environments. A robust numerical scheme for the solution of the shallow water equations based on the finite volume method was implemented, which can handle complex flow conditions, e. g. small water depths, wetting/drying and varying flow conditions including sub- and supercritical flows, hydraulic jumps and sharp water level gradients. In addition, the shallow water equations were augmented by the transport of contaminants and sediments and an infiltration model based on the Green-Ampt equation. A numerical framework was developed which provides the fundamental infrastructure for explicit high-order finite volume schemes, robust numerical methods and a flexible codebase which allows simple extension by new processes and numerical schemes. By means of several verification tests and case studies involving channel flow, rainfall-runoff, tracer transport, infiltration and sediment transport, the suitability of the software framework and the developed numerical schemes was demonstrated.


Quick Access

Schnellnavigation zur Seite über Nummerneingabe